NUMERICAL METHODS-LECTURE XIII: DYNAMIC DISCRETE CHOICE ESTIMATION (See Rust 1987)

Trevor Gallen

Fall 2018

INTRODUCTION

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - 10 years of monthly data
 - bus mileage and engine replacement
 - ▶ 104 buses
 - ► 1 Harold

INTRODUCTION

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - 10 years of monthly data
 - bus mileage and engine replacement
 - ▶ 104 buses
 - 1 Harold
- Not interested in Harold per se

INTRODUCTION

- Rust (1987) wrote a paper about Harold Zurcher's decisions as the superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company.
 - 10 years of monthly data
 - bus mileage and engine replacement
 - ▶ 104 buses
 - 1 Harold
- Not interested in Harold per se
- Interested in application of Dynamic Discrete Choice framework

DESCRIPTION

- Observe monthly bus mileage
- Observe maintenance diary with date, milage, and list of components repaired or replaced
- Three types of maintenance operations
 - Routine adjustments (brake adjustments, tire rotation)
 - Replacement of individual components when failed
 - Major engine overhauls
- Model Zurcher's decision to replace bus engines based on observables and unobservables

DESCRIPTION

- Observe monthly bus mileage
- Observe maintenance diary with date, milage, and list of components repaired or replaced
- Three types of maintenance operations
 - Routine adjustments (brake adjustments, tire rotation)
 - Replacement of individual components when failed
 - Major engine overhauls
- Model Zurcher's decision to replace bus engines based on observables and unobservables

Model

- Agent is forward looking
- Maximizes expected intertemporal payoff
- Estimate parameters of the models
- > Test whether the agent's behavior is consistent with the model

Replacement data-I

TABLE IIa

SUMMARY OF REPLACEMENT DATA

(Subsample of buses for which at least 1 replacement occurred)

		Mileage at	Replacement						
Bus Group	Max	Min	Mean	Standard Deviation	Мах	Min	Mean	Standard Deviation	Number of Observations
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	273,400	124,800	199,733	37,459	74	38	59.1	10.9	27
4	387,300	121,300	257,336	65,477	116	28	73.7	23.3	33
5	322,500	118,000	245,291	60,258	127	31	85.4	29.7	11
6	237,200	82,400	150,786	61,007	127	49	74.7	35.2	7
7	331,800	121,000	208,963	48,981	104	41	68.3	16.9	27
8	297,500	132,000	186,700	43,956	104	36	58.4	22.2	19
Full									
Sample	387,400	83,400	216,354	60,475	127	28	68.1	22.4	124

Replacement data-II

TABLE IIb

CENSORED DATA

(Subsample of buses for which no replacements occurred)

		Mileage at N							
Bus Group	Max	Min	Mean	Standard Deviation	Max	Min	Mean	Standard Deviation	Number of Observation
1	120,151	65,643	100,117	12,929	25	25	25	0	15
2	161,748	142,009	151,183	8,530	49	49	49	0	4
3	280,802	199,626	250,766	21,325	75	75	75	0	21
4	352,450	310,910	337,222	17,802	118	117	117.8	0.45	5
5	326,843	326,843	326,843	0	130	130	130	0	1
6	299,040	232,395	265,264	33,332	130	128	129.3	1.15	3
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
Full									
Sample	352,450	65,643	207,782	85,208	130	25	66.4	34.6	49

Replacement data-III

SAMPLE

- Focus on bus groups 1-4
- Most recent acquisitions
- Have data on replacement costs only for this group
- Utilization fairly constant within each group (necessary for model)

Model - I

► Harold chooses {i₁, i₂, ..., i_t, ...} to maximize his expected utility

$$\max_{\{i_1,i_2,\ldots,i_t,\ldots\}} E_t \sum_{t=1}^{\infty} \beta^{t-1} u(x_t,\varepsilon_t,i_t;\theta)$$

- ► x_t is the total mileage on an engine since last replacement
- ε_t are unobservable (to the econometrician) shocks
- *i_t* is an indicator of engine replacement
- θ is vector of parameters (to be discussed below)

Model - II

Cost function

$$c(x,\theta_1) = m(x,\theta_{11}) + \mu(x,\theta_{12})b(x,\theta_{13})$$

- ► m(x, θ₁₁) is the conditional expectation of normal maintenance and operation expenditure
- μ(x, θ₁₂) is the conditional probability of an unexpected engine failure
- ► b(x, θ₁₃) is the conditional expectation of towing costs, repair costs, and loss of customer goodwill costs resulting from engine failure
- No data on maintenance and operating costs, so only estimating the sum of costs c(x, θ₁)

$\mathrm{Model}\ \textbf{-}\ \mathrm{III}$

▶ Stochastic process governing {*i*_t, *x*_t} is the solution to

$$V_{\theta}(x_t) = \sup_{\Pi} E\left\{\sum_{j=t}^{\infty} \beta^{j-t} u(x_j, f_j, \theta_1) | x_t\right\}$$

► where utility u is given by $u(x_t, i_t, \theta_1) = \begin{cases} -c(x_t, \theta_1) & \text{if } i_t = 0 \\ -\left[\overline{P} - \underline{P} + c(0, \theta_1)\right] & \text{if } i_t = 1 \end{cases}$

- $\Pi = \{f_t, f_{t+1}, ...\}$ is a sequence of decision rules where
- ▶ each f indicates the optimal choice (replace or not) at time t given the entire history of investment i_{t-1}, ..., i₁ and mileage x_t, x_{t-1}, ..., x₁ observed to date
- <u>P</u> is the scrap value of an engine
- \overline{P} is the cost of a new engine

$\mathrm{Model}\ \text{-}\ \mathrm{IV}$

• Evolution of *x*_t is given by stochastic process:

 $p(x_{t+1}|x_t, i_t, \theta_2) = \begin{cases} \theta_2 \exp[\theta_2(x_{t+1} - x_t)] & \text{if } i_t = 0 & \& x_{t+1} \ge x_t \\ \theta_2 \exp[\theta_2(x_{t+1})] & \text{if } i_t = 1 & \& x_{t+1} \ge 0 \\ 0 & o/w \end{cases}$

- ▶ Without investment, next period mileage is drawn from exponential CDF 1 − exp[θ₂(x_{t+1} − x_t)]
- With investment, next period mileage is drawn from exponential CDF 1 − exp[θ₂(x_{t+1} − 0)]

Model - V

Bellman:

ſ

$$\mathcal{U}_{\theta}(x_t) = \max_{i_t \in \{0,1\}} u(x_t, i_t, \theta_1) + \beta E V_{\theta}(x_t, i_t)$$

$$EV_{\theta}(x_t, i_t) = \int_{0}^{\infty} V_{\theta}(y) P(dy|x_t, i_t, \theta_2)$$
$$i_t = f(x_t, \theta) = \begin{cases} 1 & \text{if } x_t > \gamma(\theta_1, \theta_2) \\ 0 & \text{if } x_t \le \gamma(\theta_1, \theta_2) \end{cases}$$

Where γ(θ₁, θ₂) is the investment cut-off ("optimal stopping barrier") given by the unique solution to

$$(\overline{P}-\underline{P})(1-\beta) = \int_0^{\gamma(\theta_1,\theta_2)} [1-\beta \exp\{-\theta_2(1-\beta)y\}] \frac{\partial c(y,\theta_1)}{\partial y dy}$$

$\mathrm{Model}\ \textbf{-}\ \mathrm{VI}$

Making the model stochastic:

$$i_t = f(x_t, \theta) + \varepsilon_t$$

 ε_t known to agent but unknown to the econometrician

Model - VII

$$C(x_t)$$

$$\varepsilon_t = \{e_t(i) | i \in C(x_t)\}$$

$$x_t = \{x_t(1), \dots, x_t(K)\}$$

$$u(x_t, i_t, \theta_1) + \varepsilon_t(i)$$

$$p(x_{t+1}, \varepsilon_{t+1} | x_t, \varepsilon_t, i_t, \theta_2, \theta_3)$$

$$\theta = (\beta, \theta_1, \theta_2, \theta_3)$$

Choice set. A finite set of allowable values of the control variable i_t when state variable is x_t A $\#C(x_t)$ -dimensional vector of state variables observed by agent by not by the econometrician. K-dimensional vector of state variables observed by both the agent and the econometrician.

Realized single period utility of decision *i* when state variable is x_t, ε_t). θ_1 is a vector of unknown parameters to be estimated

Markov transitional denisty for state variable (x_t, ε_t) when alternative i_t is selected. θ_1 and θ_2 are vectors of unknown parameters to be estimated.

The complete $1+{\it K}_1+{\it K}_2+{\it K}_3$ vector of parameters to be estimated

$\mathrm{Model}\ \textbf{-}\ \mathrm{VIII}$

Infinite horizon, discounted Harold decision problem:

$$V_{\theta}(x_t, \varepsilon_t) = \sup_{\Pi} E\left\{ \sum_{j=t}^{\infty} \beta^{j-t} \left(u(x_j, f_j, \theta_1) + \varepsilon_j(f_j) \right) \middle| x_t, \varepsilon_t, \theta_2, \theta_3 \right\}$$

The optimal value function V_{θ} is the unique solution to

$$V_{\theta}(x_t, \varepsilon_t) = \max_{i_t \in C(x_t)} [u(x_t, i_t, \theta_1) + \varepsilon_t(i) + \beta E V_{\theta}(x_t, \varepsilon_t, i_t)]$$

with the decision rule

$$i_t = f(x_t, \varepsilon_t, \theta) \equiv \arg \max_{i_t \in C(x_t)} [u(x_t, i_t, \theta_1) + \varepsilon_t(i_t) + \beta EV_{\theta}(x_t, \varepsilon_t, i_t)]$$

MODEL - IX

Problems:

- ► ε_t appears nonlinearly. Have to integrate out over ε_t to obtain choice probabilities
- Dimensionality: grid approach to estimating ε would still be too large to be computationally tractable (especially in 1987).

Model - X

Conditional Independence Assumption:

$$P(x_{t+1},\varepsilon_{t+1}|x_t,\varepsilon_t,i,\theta_2,\theta_3) = q(\varepsilon_{t+1}|x_{t+1},\theta_2)P(x_{t+1}|x_t,i,\theta_3)$$

ESTIMATION-I

Three likelihood functions. Two partial likelihoods:

$$\ell^{1}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0},\theta) = \prod_{t=1}^{T} p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

$$\ell^{2}(x_{1},...,x_{T},i_{1},...,i_{T}|\theta) = \prod_{t=1}^{T} P(i_{t}|x_{t},\theta)$$

And the full likelihood function:

$$\ell^{f}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0},\theta) = \prod_{t=1}^{T} P(i_{t}|x_{t},\theta) p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

Three stages of estimation.

ESTIMATION-II

Recall, have value function which is given by the functional equation

$$EV_{\theta}(x,i) = \int_{y} \log \left\{ \sum_{j \in C(y)} \exp(u(y,j,\theta_1) + \beta EV_{\theta}(y,j)) \right\} p(dy|x,i,\theta_3)$$

Goal is to estimate θ using a nested fixed point algorithm:

- For each θ , compute EV_{θ} using a fixed point algorithm
- Outer hill climbing algorithm searches for the value of θ which maximizes the likelihood function.

ESTIMATION-III

First estimate the parameters θ_3 of the transition probability

$$p(x_{t+1}|x_t, i_t, \theta_3) = \begin{cases} g(x_{t+1} - x_t, \theta_3) & \text{if} & i_t = 1\\ g(x_{t+1} - 0, \theta_3) & \text{if} & i_t = 0 \end{cases}$$

Using

$$\ell^{1}(x_{1},...,x_{T},i_{1},...,i_{T}|x_{0},i_{0}\theta) = \prod_{t=1}^{T} p(x_{t}|x_{t-1},i_{t-1},\theta_{3})$$

g is a multinomial distribution on the set {0,1,2} corresponding to monthly mileage intervals [0,5000), [5000, 10000), [10000, ∞)

• so
$$\theta_{3j} = Pr\{x_{t+1} = x_t + j | x_t, i_t = 0\}, j = 0, 1$$

• This first stage doesn't require estimation of EV_{θ} !

IDEA OF ESTIMATION

- Need to estimate mileage cost parameters θ₁, replacement cost *RC*, and transition parameters θ₃
- First, estimate transition probabilities θ_3
- Then, use these transitions and guess at θ₁ and RC to solve for V and simulate out. Choose θ₁ and RC parameters to best fit likelihood of replacement
- Then estimate all together using consistent first stage estimates
- Important part is nested fixed point estimation:
 - 1. Guess parameters
 - 2. Given parameters, solve for V
 - 3. Simulate outcomes
 - 4. Calculate error between outcomes and data: go back to step 1

ESTIMATION-IV

TABLE V

WITHIN GROUP ESTIMATES OF MILEAGE PROCESS WITHIN GROUP HETEROGENEITY TESTS

(Standard errors in parentheses)

	Group 1 1983 Grumman	Group 2 1981 Chance	Group 3 1979 GMC	Group 4 1975 GMC	Group 5 1974 GMC (8V)	Group 6 1974 GMC (6V)	Group 7 1972 GMC (8V)	Group 8 1972 GMC (6V)
θ ₃₁	.197	.391	.307	.392	.489	.618	.600	.722
θ_{32}	.789	.599	.683	.595	.507	.382	.397	.278
θ_{33}	.014 (.006)	.010 (.007)	.010 (.002)	.013 (.002)	.005	.000 (0)	.003	.000 (0)
Restricted		, , ,	, , ,		, , ,	,	, , ,	
Log, Likelihood	-203.99	-138.57	-2219.58	-3140.57	-1079.18	-831.05	-1550.32	-1330.35
Unrestricted		126 22		2004.20	1000 15	00(00	1 6 9 9 40	1217 (0
Likelihood ratio test	-187.71	-136.77	-2167.04	-3094.38	-1068.45	-826.32	-1523.49	-1317.69
statistic	32.56	3.62	105.08	92.39	21.46	9.46	53.67	25.31
Degrees of								
Freedom	42	9	141	108	33	18	51	34
Marginal Significance								
Level	.852	.935	.990	.858	.939	.948	.372	.859

ESTIMATION-V

TABLE VI

BETWEEN GROUP ESTIMATES OF MILEAGE PROCESS BETWEEN GROUP HETEROGENEITY TESTS

(Standard errors in parentheses)

	1, 2, 3	1, 2, 3, 4	4, 5	6, 7	6, 7, 8	5, 6, 7, 8	Full Sample
θ_{31}	.301	.348	.417	.607	.652	.618	.475
	(.007)	(.005)	(.006)	(.008)	(.006)	(.006)	(.004)
θ_{32}	.688	.639	.572	.392	.347	.380	.517
	(.007)	(.005)	(.007)	(.008)	(.006)	(.006)	(.004)
θ_{33}	.011	.012	.011	.002	.001	.002	.007
50	(.002)	(.001)	(.001)	(.001)	(.004)	(.001)	(.000)
Restricted				. ,			
Log Likelihood	-2575.98	-5755.00	-4243.73	-2384.50	-3757.76	-4904.41	-11,237.68
Unrestricted							
Log Likelihood	-2491.51	-5585.89	-4162.83	-2349.81	-3668.50	-4735.95	-10,321.84
Likelihood							
ratio test	168.93	338.21	161.80	69.39	180.52	336.93	1,831.67
statistic							
Degrees of							
Freedom	198	309	144	81	135	171	483
Marginal							
Significance							
Level	.934	.121	.147	.818	.005	1.5E-17	7·7E-10

ESTIMATION-VI

Given θ_3 , and using ℓ^2 we can obtain estimates for β , θ_1 , and RC $(RC = \overline{P} - \underline{P})$:

$$\ell^{2}(x_{1},...,x_{T},i_{1},...i,T)|\theta) = \prod_{t=1}^{T} P(i_{t}|x_{t},\theta)$$

where

$$P(i|x,\theta) = \frac{\exp\{u(x,i,\theta_1) + \beta EV_{\theta}(x,i)\}}{\sum_{j \in C(x)} \exp\{u(x,j,\theta_1) + \beta EV_{\theta}(x,j)\}}$$

with

$$EV_{\theta}(x,i) = \int_{y} \log \left\{ \sum_{j \in C(y)} \exp(u(y,j,\theta_1) + \beta EV_{\theta}(y,j)) \right\} p(dy|x,i,\theta_3)$$

and

$$u(x_t, i_t, \theta_1) + \varepsilon_t(i) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if } i = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } i = 0 \end{cases}$$

ESTIMATION-VII

- θ_1 are the parameters of the cost function
- Compare different (parsimonious) specifications
- Linear and square root forms do well

ESTIMATION-VIII

TABLE VIII

SUMMARY OF SPECIFICATION SEARCH^a

	Bus Group					
Cost Function	1, 2, 3	4	1, 2, 3, 4			
Cubic	Model 1	Model 9	Model 17			
$c(x, \theta_1) = \theta_{11}x + \theta_{12}x^2 + \theta_{13}x^3$	-131.063	-162.885	-296.515			
	-131.177	-162.988	-296.411			
quadratic	Model 2	Model 10	Model 18			
$e(x, \theta_1) = \theta_{11}x + \theta_{12}x^2$	-131.326	-163.402	-297.939			
	-131.534	-163.771	-299.328			
inear	Model 3	Model 11	Model 19			
$c(x, \theta_1) = \theta_{11}x$	-132.389	-163.584	-300.250			
	-134.747	-165.458	-306.641			
square root	Model 4	Model 12	Model 20			
$c(x, \theta_1) = \theta_{11}\sqrt{x}$	-132.104	-163.395	-299.314			
	-133.472	-164.143	-302.703			
power	Model 5 ^b	Model 13 ^b	Model 21t			
$c(x, \theta_1) = \theta_{11} x^{\theta_{12}}$	N.C.	N.C.	N.C.			
	N.C.	N.C.	N.C.			
hyperbolic	Model 6	Model 14	Model 22			
$c(x, \theta_1) = \theta_{11}/(91-x)$	-133.408	-165.423	-305.605			
	-138.894	-174.023	-325.700			
mixed	Model 7	Model 15	Model 23			
$c(x, \theta_1) = \theta_{1,1}/(91-x) + \theta_{1,2}\sqrt{x}$	-131.418	-163.375	-298,866			
	-131.612	-164.048	-301.064			
nonparametric	Model 8	Model 16	Model 24			
$f(x, \theta_{1})$ any function	-110.832	-138.556	-261.641			
	-110.832	-138,556	-261.641			

⁴ First entry in each box is (partial) log likelihood value ℓ^2 in equation (5.2)) at β = .9999. Second entry is partial log likelihood value at β = 0.

ESTIMATION-IX

- Next look at "myopic" replacement rule
- replace only when operating costs c(x_t, θ₁) exceed current cost of replacement RC + c(0, θ₁)
- This model is rejected
- $\beta = .999$ produces a statistically significantly better fit of the model to the data

ESTIMATION-VIII

So what? Why not just do a logit?

- So what? Why not just do a logit?
- Rust estimates Harold's problem at a micro level

- So what? Why not just do a logit?
- Rust estimates Harold's problem at a micro level
- Changes in interest rates, costs, etc. he can still deal with even if no variation in data!

- So what? Why not just do a logit?
- Rust estimates Harold's problem at a micro level
- Changes in interest rates, costs, etc. he can still deal with even if no variation in data!

Not myopic

- So what? Why not just do a logit?
- Rust estimates Harold's problem at a micro level
- Changes in interest rates, costs, etc. he can still deal with even if no variation in data!
- Not myopic
- Good example of indirectly inferring underlying parameters from agent behavior