
Numerical Methods-Lecture XIII:
Dynamic Discrete Choice Estimation

(See Rust 1987)

Trevor Gallen

Fall 2018

1 / 37



Introduction

I Rust (1987) wrote a paper about Harold Zurcher’s decisions
as the superintendent of maintenance at the Madison
(Wisconsin) Metropolitan Bus Company.

I 10 years of monthly data

I bus mileage and engine replacement

I 104 buses

I 1 Harold

I Not interested in Harold per se

I Interested in application of Dynamic Discrete Choice
framework
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Description

I Observe monthly bus mileage

I Observe maintenance diary with date, milage, and list of
components repaired or replaced

I Three types of maintenance operations
I Routine adjustments (brake adjustments, tire rotation)

I Replacement of individual components when failed

I Major engine overhauls

I Model Zurcher’s decision to replace bus engines based on
observables and unobservables
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Model

I Agent is forward looking

I Maximizes expected intertemporal payoff

I Estimate parameters of the models

I Test whether the agent’s behavior is consistent with the model
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Replacement data-I
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Replacement data-II
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Replacement data-III
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Sample

I Focus on bus groups 1-4

I Most recent acquisitions

I Have data on replacement costs only for this group

I Utilization fairly constant within each group (necessary for
model)
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Model - I

I Harold chooses {i1, i2, ..., it , ...} to maximize his expected
utility

max
{i1,i2,...,it ,...}

Et

∞∑
t=1

βt−1u(xt , εt , it ; θ)

I xt is the total mileage on an engine since last replacement

I εt are unobservable (to the econometrician) shocks

I it is an indicator of engine replacement

I θ is vector of parameters (to be discussed below)
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Model - II

I Cost function

c(x , θ1) = m(x , θ11) + µ(x , θ12)b(x , θ13)

I m(x , θ11) is the conditional expectation of normal
maintenance and operation expenditure

I µ(x , θ12) is the conditional probability of an unexpected
engine failure

I b(x , θ13) is the conditional expectation of towing costs, repair
costs, and loss of customer goodwill costs resulting from
engine failure

I No data on maintenance and operating costs, so only
estimating the sum of costs c(x , θ1)
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Model - III
I Stochastic process governing {it , xt} is the solution to

Vθ(xt) = sup
Π

E


∞∑
j=t

βj−tu(xj , fj , θ1) |xt


I where utility u is given by

u(xt , it , θ1) =

{
−c(xt , θ1) if it = 0

−
[
P − P + c(0, θ1)

]
if it = 1

I Π = {ft , ft+1, ...} is a sequence of decision rules where

I each f indicates the optimal choice (replace or not) at time t
given the entire history of investment it−1, ..., i1 and mileage
xt , xt−1, ..., x1 observed to date

I P is the scrap value of an engine

I P is the cost of a new engine
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Model - IV

I Evolution of xt is given by stochastic process:

p(xt+1|xt , it , θ2)

=


θ2 exp[θ2(xt+1 − xt)] if it = 0 & xt+1 ≥ xt
θ2 exp[θ2(xt+1)] if it = 1 & xt+1 ≥ 0
0 o/w

I Without investment, next period mileage is drawn from
exponential CDF 1− exp[θ2(xt+1 − xt)]

I With investment, next period mileage is drawn from
exponential CDF 1− exp[θ2(xt+1 − 0)]
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Model - V

Bellman:

Vθ(xt) = max
it∈{0,1}

u(xt , it , θ1) + βEVθ(xt , it)

EVθ(xt , it) =

∫ ∞
o

Vθ(y)P(dy |xt , it , θ2)

it = f (xt , θ) =

{
1 if xt > γ(θ1, θ2)
0 if xt ≤ γ(θ1, θ2)

I Where γ(θ1, θ2) is the investment cut-off (“optimal stopping
barrier”) given by the unique solution to

( P − P)(1− β) =

∫ γ(θ1,θ2)

0
[1− β exp{−θ2(1− β)y}]∂c(y , θ1)

∂ydy
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Model - VI

Making the model stochastic:

it = f (xt , θ) + εt

εt known to agent but unknown to the econometrician
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Model - VII

C (xt) Choice set. A finite set of allowable values of
the control variable it when state variable is xt

εt = {et(i)|i ∈ C (xt)} A #C (xt)-dimensional vector of state variables
observed by agent by not by the econometrician.

xt = {xt(1), ..., xt(K )} K−dimensional vector of state variables ob-
served by both the agent and the econometri-
cian.

u(xt , it , θ1) + εt(i) Realized single period utility of decision i when
state variable is xt , εt). θ1 is a vector of unknown
parameters to be estimated

p(xt+1, εt+1|xt , εt , it , θ2, θ3) Markov transitional denisty for state variable
(xt , εt) when alternative it is selected. θ1 and
θ2 are vectors of unknown parameters to be
estimated.

θ = (β, θ1, θ2, θ3) The complete 1 + K1 + K2 + K3 vector of pa-
rameters to be estimated
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Model - VIII

Infinite horizon, discounted Harold decision problem:

Vθ(xt , εt) = sup
Π

E


∞∑
j=t

βj−t (u(xj , fj , θ1) + εj(fj))

∣∣∣∣∣∣ xt , εt , θ2, θ3


The optimal value function Vθ is the unique solution to

Vθ(xt , εt) = max
it∈C(xt)

[u(xt , it , θ1) + εt(i) + βEVθ(xt , εt , it)]

with the decision rule

it = f (xt , εt , θ) ≡ arg max
it∈C(xt)

[u(xt , it , θ1) + εt(it) + βEVθ(xt , εt , it)]
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Model - IX

Problems:

I εt appears nonlinearly. Have to integrate out over εt to obtain
choice probabilities

I Dimensionality: grid approach to estimating ε would still be
too large to be computationally tractable (especially in 1987).
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Model - X

Conditional Independence Assumption:

P(xt+1, εt+1|xt , εt , i , θ2, θ3) = q(εt+1|xt+1, θ2)P(xt+1|xt , i , θ3)
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Estimation-I

Three likelihood functions. Two partial likelihoods:

`1(x1, ..., xT , i1, ..., iT |x0, i0, θ) =
T∏
t=1

p(xt |xt−1, it−1, θ3)

`2(x1, ..., xT , i1, ..., iT |θ) =
T∏
t=1

P(it |xt , θ)

And the full likelihood function:

`f (x1, ..., xT , i1, ..., iT |x0, i0, θ) =
T∏
t=1

P(it |xt , θ)p(xt |xt−1, it−1, θ3)

Three stages of estimation.
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Estimation-II

Recall, have value function which is given by the functional
equation

EVθ(x , i) =

∫
y

log

 ∑
j∈C(y)

exp(u(y , j , θ1) + βEVθ(y , j))

 p(dy |x , i , θ3)

Goal is to estimate θ using a nested fixed point algorithm:

I For each θ, compute EVθ using a fixed point algorithm

I Outer hill climbing algorithm searches for the value of θ which
maximizes the likelihood function.

23 / 37



Estimation-III
First estimate the parameters θ3 of the transition probability

p(xt+1|xt , it , θ3) =

{
g(xt+1 − xt , θ3) if it = 1
g(xt+1 − 0, θ3) if it = 0

Using

`1(x1, ..., xT , i1, ..., iT |x0, i0θ) =
T∏
t=1

p(xt |xt−1, it−1, θ3)

I g is a multinomial distribution on the set {0, 1, 2}
corresponding to monthly mileage intervals
[0, 5000), [5000, 10000), [10000,∞)

I so θ3j = Pr{xt+1 = xt + j |xt , it = 0}, j = 0, 1

I This first stage doesn’t require estimation of EVθ!
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Idea of Estimation

I Need to estimate mileage cost parameters θ1, replacement
cost RC , and transition parameters θ3

I First, estimate transition probabilities θ3

I Then, use these transitions and guess at θ1 and RC to solve
for V and simulate out. Choose θ1 and RC parameters to
best fit likelihood of replacement

I Then estimate all together using consistent first stage
estimates

I Important part is nested fixed point estimation:
1. Guess parameters
2. Given parameters, solve for V
3. Simulate outcomes
4. Calculate error between outcomes and data: go back to step 1
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Estimation-IV
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Estimation-V
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Estimation-VI
Given θ3, and using `2 we can obtain estimates for β, θ1, and RC
(RC = P − P):

`2(x1, ..., xT , i1, ...i ,T )|θ) =
T∏
t=1

P(it |xt , θ)

where

P(i |x , θ) =
exp{u(x , i , θ1) + βEVθ(x , i)}∑

j∈C(x) exp{u(x , j , θ1) + βEVθ(x , j)}

with

EVθ(x , i) =

∫
y

log

 ∑
j∈C(y)

exp(u(y , j , θ1) + βEVθ(y , j))

 p(dy |x , i , θ3)

and

u(xt , it , θ1) + εt(i) =

{
−RC − c(0, θ1) + εt(1) if i = 1
−c(xt , θ1) + εt(0) if i = 0
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Estimation-VII

I θ1 are the parameters of the cost function

I Compare different (parsimonious) specifications

I Linear and square root forms do well
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Estimation-VIII
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Estimation-IX

I Next look at “myopic” replacement rule

I replace only when operating costs c(xt , θ1) exceed current
cost of replacement RC + c(0, θ1)

I This model is rejected

I β = .999 produces a statistically significantly better fit of the
model to the data
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Estimation-VIII
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Takeaways

I So what? Why not just do a logit?

I Rust estimates Harold’s problem at a micro level

I Changes in interest rates, costs, etc. he can still deal with
even if no variation in data!

I Not myopic

I Good example of indirectly inferring underlying parameters
from agent behavior
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